First Semester MCA Degree Examination, June/July 2018 Data Structures using C

Time: 3 hrs. Max. Marks: 80

Note: Answer any FIVE full questions, choosing one full question from each module.

Module-1

- a. Explain any two control structures with appropriate examples. (08 Marks) Write a C program to display Fibonacci series for n numbers.
 - (08 Marks)

OR

- a. Define function. Write a C program to demonstrate call by value and call by reference. (08 Marks)
 - Write a C program to find and display the sum of elements of a single dimensional array.
 - (04 Marks) c. Discuss about the process of passing arrays to functions. (04 Marks)

Module-2

- a. List out the advantages of pointers. Exemplify the process of initialization of pointer (08 Marks)
 - b. What are the three ways to access members of a structure? Give examples. (04 Marks)
 - c. Classify the data structures.

OR

- Write a C program to search an element in a single dimensional array using linear search method. (08 Marks)
 - Explain any 4 string-handling functions with examples.

(08 Marks)

Module-3

a. Represent stack as an Abstract Data Type (ADT).

(08 Marks)

(04 Marks)

- b. Convert the following expression to prefix and postfix expression:

 - (i) $(A + B \land C) / D + E$ (ii) $A * B \land C * (B + C) * D$

(08 Marks)

OR

Write a short note on Towers of Hanoi and give an example.

- (08 Marks)
- Define circular Queue. Explain its advantages over the ordinary queue. Write a function to demonstrate insert operation on circular queue. (08 Marks)

Module-4

- Discuss about different types of memory management functions.
- (09 Marks)
- b. Write a function for each of the following operations on Linked List:
 - Insertion of node at the beginning
 - Insertion of node at the end
 - Insertion of node at a given position

(07 Marks)

16/17MCA1

OR

a. Write a C program to insert an element at a given position in the circular Linked List.

(08 Mark

b. Demonstrate application of Linked Lists as Stacks and Queues.

(08 Mark

Module-5

- a. Explain about the following:
 - Level of a tree
 - Complete Binary Tree
 - Strictly Binary Tree

Skewed Binary Tree

(08 Mark

b. Construct Binary Search tree for the following numbers and perform Inorder. Preorder as Postorder traversals:

27 5 36 47 19 52 21 44

(08 Mark

OR

10 a. Write a C program to perform insertion sort on an unordered list of numbers. Trace the ste (08 Mark of the sorting process. (08 Mare

b. Discuss the methods for resolving hash-collisions with suitable examples.

\$1 \$4 11 44 B